Archive |

ASSET Seminar: “Statistical Methods for Trustworthy Language Modeling” (Tatsu Hashimoto, Stanford University)

ABSTRACT: Language models work well, but they are far from trustworthy. Major open questions remain on high-stakes issues such as detecting benchmark contamination, identifying LM-generated text, and reliably generating factually […]

ASSET Seminar: “Scaling Your Large Language Models on a Budget” (Atlas Wang, University of Texas at Austin)

ABSTRACT: As the sizes of Large Language Models (LLMs) continue to grow exponentially, it becomes imperative to explore novel computing paradigms that can address the dual challenge of scaling these […]

ASSET Seminar: “Large Language Models in Medicine: Opportunities and Challenges” (Mark Dredze, Johns Hopkins University)

ABSTRACT: The rapid advance of AI driven by Large Language Models (LLMs), like ChatGPT, has led to impressive results across a range of different use cases. This has included several […]

ASSET Seminar: “Enforcing Right to Explanation: Algorithmic Challenges and Opportunities” (Himabindu Lakkaraju, Harvard University)

ABSTRACT: As predictive and generative models are increasingly being deployed in various high-stakes applications in critical domains including healthcare, law, policy and finance, it becomes important to ensure that relevant […]

ASSET Seminar: “Learning to Read X-Ray: Applications to Heart Failure Monitoring” (Polina Golland, Massachusetts Institute of Technology)

ABSTRACT: We propose and demonstrate a novel approach to training image classification models based on large collections of images with limited labels. We take advantage of availability of radiology reports […]

ASSET Seminar: “Robust Machine Learning with Foundation Models” (Aditi Raghunathan, Carnegie Mellon University)

ABSTRACT: In recent years, foundation models—large pretrained models that can be adapted for a wide range of tasks—have achieved state-of-the-art performance on a variety of tasks. While the pretrained models […]

ASSET Seminar: “Inherent Interpretability via Language Model Guided Bottleneck Design” (Mark Yatskar, Penn)

ABSTRACT: As deep learning systems improve, their applicability to critical domains is hampered because of a lack of transparency. Post-hoc explanations attempt to address this concern but they provide no […]

ASSET Seminar: “What Constitutes a Good Explanation?” (Lyle Ungar, Penn)

ABSTRACT:  Shapley values and similar methods are widely used to explain the importance of features in model predictions. Clarity in the semantics of these feature importances is subtle, but crucial: […]

ASSET Seminar: “The Future of Algorithm Auditing is Sociotechnical” (Danaë Metaxa, Penn)

ABSTRACT:  Algorithm audits are powerful tools for studying black-box systems without direct knowledge of those systems’ inner workings. While they have been effectively deployed to identify harms and biases in […]

ASSET Seminar: “Copyright, Machine Learning Research, and the Generative-AI Supply Chain” (A. Feder Cooper, Cornell University)

ABSTRACT: “Does generative AI infringe copyright?” is an urgent question. It is also a difficult question, for two reasons. First, “generative AI” is not just one product from one company. […]

Pages 1 2 3 4 5 6 7
Archive |