Loading Events

« All Events

  • This event has passed.

IDEAS/STAT Optimization Seminar

January 30 at 12:00 PM - 1:00 PM

Mengdi Wang

Controlled Generation for Large Foundation Models

Abstract:

Recent advances in large foundation models, such as large language models (LLMs) and diffusion models, have demonstrated impressive capabilities. However, to truly align these models with user feedback or maximize real-world objectives, it is crucial to exert control over the decoding processes, in order to steer the distribution of generated output. In this talk, we will explore methods and theory for controlled generation within LLMs and diffusion models. We will discuss various modalities or achieving this control, focusing on applications such as alignment of LLM, accelerated inference, transfer learning, and diffusion-based optimizer.

Bio:

Mengdi Wang is Co-Director of Princeton AI for Accelerated Invention, and associate professor at the Department of Electrical and Computer Engineering and the Center for Statistics and Machine Learning at Princeton University. She is also affiliated with the Department of Computer Science, Omenn-Darling Bioengineering Institute, and Princeton Language+Intelligence. She was a visiting research scientist at Google DeepMind, IAS and Simons Institute on Theoretical Computer Science. Her research focuses on machine learning, reinforcement learning, generative AI, large language models, and AI for science.

Mengdi received her PhD in Electrical Engineering and Computer Science from Massachusetts Institute of Technology in 2013, where she was affiliated with the Laboratory for Information and Decision Systems and advised by Dimitri P. Bertsekas. Before that, she got her bachelor degree from the Department of Automation, Tsinghua University. Mengdi received the Young Researcher Prize in Continuous Optimization of the Mathematical Optimization Society in 2016 (awarded once every three years), the Princeton SEAS Innovation Award in 2016, the NSF Career Award in 2017, the Google Faculty Award in 2017, and the MIT Tech Review 35-Under-35 Innovation Award (China region) in 2018, WAIC YunFan Award 2022, American Automatic Control Council’s Donald Eckman Award 2024 for “extraordinary contributions to the intersection of control, dynamical systems, machine learning and information theory”. She serves as a Program Chair for ICLR 2023 and Senior AC for Neurips, ICML, COLT, associate editor for Harvard Data Science Review, Operations Research. Research supported by NSF, AFOSR, NIH, ONR, Google, Microsoft C3.ai, FinUP, RVAC Medicines, MURI, GenMab.

Details

Date:
January 30
Time:
12:00 PM - 1:00 PM
Event Categories:
,
Event Tags:
, , ,

Organizer

IDEAS Center
View Organizer Website

Venue

Amy Gutmann Hall, Room 414
3333 Chestnut Street
Philadelphia, 19104 United States
+ Google Map