Loading Events

« All Events

  • This event has passed.

ESE Ph.D. Thesis Defense: “Analysis and Control of Neural Network Dynamical Systems”

November 14 at 10:00 AM - 12:00 PM

Integrating machine learning and control systems has achieved remarkable success in controlling complex dynamical systems such as autonomous vehicles. However, the resulting controlled system often has a neural network (NN) in the loop which represents the system dynamics, control policy, or perception. The nonlinearity and large scale of NNs make it challenging to provide formal safety or stability guarantees for such learning-enabled systems. This thesis focuses on developing specialized numerical tools for efficiently analyzing NN dynamical systems and a novel robust model predictive control (MPC) framework that is promising for controlling NN dynamical systems with safety guarantees. In the first part of the thesis, I demonstrate how to build a hierarchy of verification methods for isolated output range analysis of NNs, closed-loop reachability analysis, and closed-loop stability analysis of NN dynamical systems. In the second part, I present a novel robust MPC method for uncertain linear dynamical systems with significantly reduced conservatism compared with existing baselines and discuss the possibility of combining NN verification tools and robust MPC for safe control of complex dynamical systems.

Shaoru Chen

ESE Ph.D. Candidate

Shaoru Chen received a B.E. degree in Automation from Zhejiang University, Hangzhou, China, in 2017. He is currently working towards a Ph.D. degree in the Department of Electrical and Systems Engineering at the University of Pennsylvania. His research interests include robust model predictive control, verification of neural networks, and learning-enabled autonomous systems.


November 14
10:00 AM - 12:00 PM
Event Category:
Event Tags:


Electrical and Systems Engineering
View Organizer Website


Raisler Lounge (Room 225), Towne Building
220 South 33rd Street
Philadelphia, PA 19104 United States
+ Google Map
View Venue Website