- This event has passed.
MEAM Seminar: “Harnessing Physical Intelligence for High-Performance Soft Robots”
September 29, 2022 at 10:30 AM - 11:30 AM
Different from neuron-based computational intelligence through the brain, physical intelligence leverages structural designs and smart materials to physically encode sensing, actuation, control, adaption, and decision-making into the body of an agent. The stimuli-responsive body materials can enable autonomous sensory, actuation, powering, and other physical intelligence functions. The structural designs of soft body can simplify the required actuation for deformation and motion, as well as enable real-time feedback control-free locomotion and self-adaption.
In this talk, I will discuss our recent work in embodying mechanical intelligence of structural designs and/or materials intelligence of soft active materials in soft robotics, for achieving delicacy in manipulation, high speed and high efficiency in locomotion, and autonomy and intelligence. First, I will talk about utilizing the ancient paper cutting art of kirigami for programming 3D curved shape shifting via geometric mechanics guided design, as well as its application in nondestructive and delicate grasping. Then, I will discuss how to leverage bistability and multistability for achieving high-speed and high-efficient terrestrial and aqueous soft robots. Finally, I will discuss examples of integrating structural designs with soft active materials for achieving autonomy and intelligence in soft robots.
Jie Yin
Associate Professor, Department of Mechanical and Aerospace Engineering, North Carolina State University
Dr. Jie Yin is currently an Associate Professor in the Department of Mechanical and Aerospace Engineering at NC State University. Prior to join NC State, he was an Associate Professor at Temple University. Dr. Yin received his Ph.D. from Columbia University. He is the recipient of NSF Career Award and Extreme Mechanics Letter (EML) Young Investigator Award. His group’s current research focuses on mechanics guided design of soft robotics, mechanical metamaterials, and shape-morphing functional materials for sustainability.