Loading Events

« All Events

  • This event has passed.

ESE Seminar: “Adapting black-box machine learning methods for causal inference”

February 13, 2020 at 11:00 AM - 12:00 PM

Abstract: I’ll discuss the use of observational data to estimate the causal effect of a treatment on an outcome. This task is complicated by the presence of ‘confounders’ that influence both treatment and outcome, inducing observed associations that are not causal. Causal estimation is achieved by adjusting for this confounding by using observed covariate information. I’ll discuss the case where we observe covariates that carry sufficient information for the adjustment, but where explicit models relating treatment, outcome, covariates, and confounding are not available. For example, in medical data the covariates might consist of a large number of convenience health measurements of which only an unknown subset are relevant, and even then in some totally unknown manner. Or, the covariates might be a passage of (natural language) text that describes the relevant information. I’ll describe an approach that adapts deep learning and embedding methods to produce representations of the covariate information targeted toward the causal adjustment problem. In particular, I’ll describe how to modify standard architectures and training objectives to achieve statistically efficient and practically useful causal estimates.

Victor Veitch

Distinguished Postdoctoral Researcher of Statistics, Columbia University

Victor Veitch is a distinguished postdoctoral research scientist in the department of statistics at Columbia University. He completed his PhD in Statistics at the University of Toronto. His work addresses both the use of machine learning for causal inference, and the modeling of relational and network data. He has been recognized with a number of awards, including the 2017 Pierre Robillard award for best Statistics PhD thesis in Canada.


Electrical and Systems Engineering
View Organizer Website


Room 337, Towne Building
220 South 33rd Street
Philadelphia, PA 19104 United States
+ Google Map
View Venue Website