Loading Events

« All Events

  • This event has passed.

CIS Seminar: “Generative multitask learning mitigates target-causing confounding”

November 15 at 3:30 PM - 4:30 PM

We propose a simple and scalable approach to causal representation learning for multitask learning. Our approach requires minimal modification to existing ML systems, and improves robustness to prior probability shift. The improvement comes from mitigating unobserved confounders that cause the targets, but not the input. We refer to them as target-causing confounders. These confounders induce spurious dependencies between the input and targets. This poses a problem for the conventional approach to multitask learning, due to its assumption that the targets are conditionally independent given the input. Our proposed approach takes into account the dependency between the targets in order to alleviate target-causing confounding. All that is required in addition to usual practice is to estimate the joint distribution of the targets to switch from discriminative to generative classification, and to predict all targets jointly. Our results on the Attributes of People and Taskonomy datasets reflect the conceptual improvement in robustness to prior probability shift.

Kyunghyun Cho

Associate Professor, Computer Science and Data Science, New York University and CIFAR Fellow of Learning in Machines & Brains

Kyunghyun Cho is an associate professor of computer science and data science at New York University and CIFAR Fellow of Learning in Machines & Brains. He is also a senior director of frontier research at the Prescient Design team within Genentech Research & Early Development (gRED). He was a research scientist at Facebook AI Research from June 2017 to May 2020 and a postdoctoral fellow at University of Montreal until Summer 2015 under the supervision of Prof. Yoshua Bengio, after receiving PhD and MSc degrees from Aalto University April 2011 and April 2014, respectively, under the supervision of Prof. Juha Karhunen, Dr. Tapani Raiko and Dr. Alexander Ilin. He received an honour of being a recipient of the Samsung Ho-Am Prize in Engineering in 2021. He tries his best to find a balance among machine learning, natural language processing, and life, but almost always fails to do so.

Details

Date:
November 15
Time:
3:30 PM - 4:30 PM
Event Tags:
Website:
https://www.cis.upenn.edu/events/

Organizer

Computer and Information Science
Phone:
215-898-8560
Email:
cis-info@cis.upenn.edu
View Organizer Website

Venue

Wu and Chen Auditorium (Room 101), Levine Hall
3330 Walnut Street
Philadelphia, PA 19104 United States
+ Google Map
View Venue Website